Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649413

RESUMO

The 2022 mpox virus (MPXV) outbreak was sustained by human-to-human transmission; however, it is currently unclear which factors lead to sustained transmission of MPXV. Here we present Mastomys natalensis as a model for MPXV transmission after intraperitoneal, rectal, vaginal, aerosol and transdermal inoculation with an early 2022 human outbreak isolate (Clade IIb). Virus shedding and tissue replication were route dependent and occurred in the presence of self-resolving localized skin, lung, reproductive tract or rectal lesions. Mucosal inoculation via the rectal, vaginal and aerosol routes led to increased shedding, replication and a pro-inflammatory T cell profile compared with skin inoculation. Contact transmission was higher from rectally inoculated animals. This suggests that transmission might be sustained by increased susceptibility of the anal and genital mucosae for infection and subsequent virus release.

2.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485931

RESUMO

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Mamíferos
3.
Viruses ; 15(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243173

RESUMO

Skunk amdoparvovirus (Carnivore amdoparvovirus 4, SKAV) is closely related to Aleutian mink disease virus (AMDV) and circulates primarily in striped skunks (Mephitis mephitis) in North America. SKAV poses a threat to mustelid species due to reported isolated infections of captive American mink (Neovison vison) in British Columbia, Canada. We detected SKAV in a captive striped skunk in a German zoo by metagenomic sequencing. The pathological findings are dominated by lymphoplasmacellular inflammation and reveal similarities to its relative Carnivore amdoparvovirus 1, the causative agent of Aleutian mink disease. Phylogenetic analysis of the whole genome demonstrated 94.80% nucleotide sequence identity to a sequence from Ontario, Canada. This study is the first case description of a SKAV infection outside of North America.


Assuntos
Doença Aleutiana do Vison , Mephitidae , Animais , Colúmbia Britânica , Europa (Continente)/epidemiologia , Vison , Filogenia
4.
Nat Commun ; 13(1): 3519, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725735

RESUMO

Since its discovery in 2019, multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been identified. This study investigates virus spread and associated pathology in the upper and lower respiratory tracts of Syrian golden hamsters at 4 days post intranasal SARS-CoV-2 Omicron infection, in comparison to infection with variants of concern (VOCs) Gamma and Delta as well as ancestral strain 614 G. Pathological changes in the upper and lower respiratory tract of VOC Omicron infected hamsters are milder than those caused by other investigated strains. VOC Omicron infection causes a mild rhinitis with little involvement of the olfactory epithelium and minimal lesions in the lung, with frequent sparing of the alveolar compartment. Similarly, viral antigen, RNA and infectious virus titers are lower in respiratory tissues of VOC Omicron infected hamsters. These findings demonstrate that the variant has a decreased pathogenicity for the upper and lower respiratory tract of hamsters.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Pulmão/patologia , Mesocricetus , SARS-CoV-2/genética
5.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35471062

RESUMO

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/farmacologia , Microscopia Crioeletrônica , Humanos , Glicoproteínas de Membrana , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
6.
Emerg Microbes Infect ; 11(1): 725-729, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35172704

RESUMO

In brain tissue of three harbor seals of the German North Sea coast, high virus loads of highly pathogenic avian influenza virus (HPAIV) H5N8 were detected. Identification of different virus variants indicates high exposure to HPAIV circulating in wild birds, but there is no evidence for H5 specific antibodies in healthy seals. Replication of avian viruses in seals may allow HPAIV to acquire mutations needed to adapt to mammalian hosts as shown by PB2 627K variants detected in these cases.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Phoca , Animais , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Mar do Norte
7.
Nat Aging ; 2(10): 896-905, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37118289

RESUMO

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is effective in preventing COVID-19 hospitalization and fatal outcome. However, several studies indicated that there is reduced vaccine effectiveness among older individuals, which is correlated with their general health status1,2. How and to what extent age-related immunological defects are responsible for the suboptimal vaccine responses observed in older individuals receiving SARS-CoV-2 messenger RNA vaccine, is unclear and not fully investigated1,3-5. In this observational study, we investigated adaptive immune responses in adults of various ages (22-99 years old) receiving 2 doses of the BNT162b2 mRNA vaccine. Vaccine-induced Spike-specific antibody, and T and memory B cell responses decreased with increasing age. These responses positively correlated with the percentages of peripheral naïve CD4+ and CD8+ T cells and negatively with CD8+ T cells expressing signs of immunosenescence. Older adults displayed a preferred T cell response to the S2 region of the Spike protein, which is relatively conserved and a target for cross-reactive T cells induced by human 'common cold' coronaviruses. Memory T cell responses to influenza virus were not affected by age-related changes, nor the SARS-CoV-2-specific response induced by infection. Collectively, we identified signs of immunosenescence correlating with the outcome of vaccination against a new viral antigen to which older adults are immunologically naïve. This knowledge is important for the management of COVID-19 infections in older adults.


Assuntos
COVID-19 , Imunossenescência , Humanos , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Vacina BNT162 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Vacinação , RNA Mensageiro/genética
8.
Microorganisms ; 9(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34946122

RESUMO

Canine kobuvirus (CaKV) is a globally distributed pathogen of dogs and is predominantly associated with infection of the gastrointestinal tract. However, an etiological link to enteric disease has not been established since CaKV has been identified in both asymptomatic dogs and animals with diarrheic symptoms. In this study, an extraintestinal CaKV infection was detected by next-generation sequencing in a fox (Vulpes vulpes) in Germany concomitant with a canine distemper virus (canine morbillivirus; CDV) co-infection. Phylogenetic analysis of the complete coding region sequence showed that this strain was most closely related to a CaKV strain detected in a dog in the United Kingdom in 2008. The tissue and cellular tropism of CaKV was characterized by the detection of viral antigens and RNA. CaKV RNA was detected by in situ hybridization in different tissues, including epithelial cells of the stomach and ependymal cells in the brain. The use of a new RT-qPCR assay for CaKV confirmed the systemic distribution of CaKV with viral RNA also detected in the lymph nodes, bladder, trachea, and brain. The detection of a CDV infection in this fox suggests that immunosuppression should be further investigated as a contributing factor to the enhanced extraintestinal spread of CaKV.

9.
Viruses ; 13(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696467

RESUMO

Swinepox virus (SWPV) is a globally distributed swine pathogen that causes sporadic cases of an acute poxvirus infection in domesticated pigs, characterized by the development of a pathognomonic proliferative dermatitis and secondary ulcerations. More severe disease with higher levels of morbidity and mortality is observed in congenitally SWPV-infected neonatal piglets. In this study, we investigated the evolutionary origins of SWPV strains isolated from domestic pigs and wild boar. Analysis of whole genome sequences of SWPV showed that at least two different virus strains are currently circulating in Germany. These were more closely related to a previously characterized North American SWPV strain than to a more recent Indian SWPV strain and showed a variation in the SWPV-specific genome region. A single nucleotide deletion in the wild boar (wb) SWPV strain leads to the fusion of the SPV019 and SPV020 open reading frames (ORFs) and encodes a new hypothetical 113 aa protein (SPVwb020-019). In addition, the domestic pig (dp) SWPV genome contained a novel ORF downstream of SPVdp020, which encodes a new hypothetical 71aa protein (SPVdp020a). In summary, we show that SWPV strains with altered coding capacity in the SWPV specific genome region are circulating in domestic pig and wild boar populations in Germany.


Assuntos
Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Suipoxvirus/isolamento & purificação , Sus scrofa/virologia , Doenças dos Suínos/virologia , Suínos/virologia , Animais , Evolução Molecular , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Poxviridae/classificação , Poxviridae/genética , Especificidade da Espécie , Suipoxvirus/classificação , Suipoxvirus/genética
10.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811145

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children under 5 y of age. In the absence of a safe and effective vaccine and with limited options for therapeutic interventions, uncontrolled epidemics of RSV occur annually worldwide. Existing RSV reverse genetics systems have been predominantly based on older laboratory-adapted strains such as A2 or Long. These strains are not representative of currently circulating genotypes and have a convoluted passage history, complicating their use in studies on molecular determinants of viral pathogenesis and intervention strategies. In this study, we have generated reverse genetics systems for clinical isolates of RSV-A (ON1, 0594 strain) and RSV-B (BA9, 9671 strain) in which the full-length complementary DNA (cDNA) copy of the viral antigenome is cloned into a bacterial artificial chromosome (BAC). Additional recombinant (r) RSVs were rescued expressing enhanced green fluorescent protein (EGFP), mScarlet, or NanoLuc luciferase from an additional transcription unit inserted between the P and M genes. Mutations in antigenic site II of the F protein conferring escape from palivizumab neutralization (K272E, K272Q, S275L) were investigated using quantitative cell-fusion assays and rRSVs via the use of BAC recombineering protocols. These mutations enabled RSV-A and -B to escape palivizumab neutralization but had differential impacts on cell-to-cell fusion, as the S275L mutation resulted in an almost-complete ablation of syncytium formation. These reverse genetics systems will facilitate future cross-validation efficacy studies of novel RSV therapeutic intervention strategies and investigations into viral and host factors necessary for virus entry and cell-to-cell spread.


Assuntos
Farmacorresistência Viral/genética , Mutação , Vírus Sinciciais Respiratórios/genética , Animais , Antivirais/toxicidade , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células Hep G2 , Humanos , Palivizumab/toxicidade , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Vírus Sinciciais Respiratórios/patogenicidade , Genética Reversa/métodos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...